基于快速终端滑模状态观测器的车轮滑移率跟踪
连续、快速的车轮滑移率跟踪控制是电动汽车实现自动驾驶控制技术的基础,现已得到众多学者和汽车厂商的广泛关注.由于汽车在制动过程中呈现出动态非线性、参数不确定性等特点,给连续、快速的车轮滑移率跟踪控制器的设计带来了很大的挑战.针对这一挑战,众多学者采用鲁棒控制方法设计车轮滑移率跟踪控制器.
文献[1]将车速信息作为调度参数,采用李雅普诺夫稳定性理论和频域分析法设计了增益调度的车轮滑移率跟踪控制器.文献[2]将1/4 汽车动力学模型作为控制模型,采用非线性鲁棒控制方法设计了对参数不确定性和外界干扰具有强鲁棒性的车轮滑移率跟踪控制器.文献[3]利用径向基神经网络对系统复合干扰的无限逼近能力,设计了车轮滑移率跟踪前馈控制律,并采用鲁棒预测控制方法设计了车轮滑移率跟踪反馈控制律,车轮滑移率跟踪前馈和反馈控制律的有机结合,可以有效抑制系统复合干扰对系统稳定性和控制性能的影响.文献[4]采用最优预测控制方法设计了车轮滑移率跟踪控制器,并采用李雅普诺夫稳定性理论证明了所设计的车轮滑移率跟踪闭环系统对模型不确定性具有强鲁棒性.文献[5]充分考虑电动汽车制动系统的动态响应特性和机械约束,采用模型预测控制方法设计了车轮滑移跟踪控制器.文献[6]针对装配传统液压制动系统的汽车,分别建立增压、保压和减压控制模型,并采用Filippov 意义下的李雅普诺夫稳定性理论设计了切换控制规则,实现了目标车轮滑移率的稳定跟踪控制.文献[7]设计了液压制动系统的增压、保压和减压的模糊逻辑控制规则,实现了目标车轮滑移率的稳定跟踪控制.
除了上述鲁棒控制方法,滑模控制方法因具有较强的鲁棒性、较高的计算效率等优点,广泛应用于车轮滑移率跟踪控制器的设计.文献[8-9]采用车轮滑移率跟踪偏差作为滑模面,设计了车轮滑移率跟踪滑模控制器.由于文献[8-9]在车轮滑移率跟踪滑模控制器中引入符号函数项来抑制系统复合干扰对系统稳定性和控制性能的影响,导致滑模面上的系统轨迹存在“抖振”现象.为了抑制文献[8-9]提出的车轮滑移率跟踪滑模控制器存在的“抖振”现象,文献[10-11]将车轮滑移率跟踪偏差与其积分的和作为滑模面,设计了车轮滑移率跟踪积分滑模控制器.文献[12]基于自适应反馈递归滑模控制方法设计了车轮滑移率跟踪控制律,并采用径向基神经网络干扰观测器在线估计和补偿系统的复合干扰,从而有效避免了滑模控制方法产生的“抖振”现象.文献[13]采用二阶滑模控制方法设计了无“抖振”现象的车轮滑移率跟踪控制律,但是二阶滑模控制方法需要滑模面的导数作为反馈量.文献[14]基于自适应滑模控制方法设计了车轮滑移率跟踪指数趋近控制器,并且采用函数型连接小波神经网络干扰观测器估计和补偿系统复合干扰,从而有效地避免了自适应滑模控制方法产生的“抖振”现象.文献[15]充分考虑了制动系统的时延特性,结合反馈线性化方法和自适应滑模控制方法设计了抗时延的车轮滑移率跟踪控制器.文献[16]采用自适应积分滑模控制方法设计了对扰动具有强鲁棒性的车轮滑移率跟踪控制器,并通过参数自适应律来提高系统对路面附着条件的适应能力.上述基于滑模控制方法的车轮滑移率跟踪控制器需要系统的全部状态信息作为反馈量.因此,对于难以采用传感器直接测量的状态信息,需要设计状态观测器对其进行实时观测.
滑模状态观测器因对参数不确定性具有不敏感性,广泛应用于状态信息的实时估计.文献[17]采用滑模状态观测器实时观测永磁同步电机的转速信息,并以此为基础实现了永磁同步电机的无传感器矢量控制.文献[18]采用滑模观测器实时观测船用永磁推进电机的位置信息,并通过李雅普诺夫稳定理论给出了滑模观测器参数的选择依据.文献[19]采用滑模观测器实时观测航天器的角速度信息,并以此为基础实现了航天器姿态容错控制.上述滑模观测器的误差均是渐近收敛到零或一致最终有界的,难于实现滑模观测器与控制器的模块化设计.
鉴于此,本文基于有限时间稳定和快速终端滑模控制理论设计具有有限时间收敛特性的快速终端滑模状态观测器,该观测器采用已知的车轮滑移率跟踪误差信息,实时观测未知的车轮滑移率跟踪误差一阶导数信息,为全状态反馈车轮滑移率跟踪控制律的设计奠定基础.随后,以快速终端滑模状态观测器的观测信息为基础,采用模块化思想独立设计快速终端滑模跟踪控制律,使车轮滑移率跟踪闭环系统可以快速、准确地跟踪目标滑移率.最后,结合车辆动力学仿真软件建立模型在环测试系统,仿真验证本文提出的车轮滑移率跟踪控制器的可行性和有效性.